Injuries of the Foot and Ankle

Bryan Lapinski, MD

Introduction

• The average person takes 1 million steps per year
• Approximately 30 bones in the foot and ankle are subjected to forces of 3-7 times body weight
• Trauma to the foot and ankle, even minor, can have profound effects on one’s ability to ambulate and work effectively

Introduction

• Goals of Foot and Ankle Fracture Management
 – Restoration of normal anatomy
 – Avoidance of prolonged casting
 – Rapid mobilization
 – Early return to weight bearing
Introduction

• Distal Tibia Fractures
• Talus Fractures
• Calcaneus Fractures

Introduction

• Mechanism of Injury
 – Motor vehicle collision
 • Improved vehicular safety (airbags)
 • ATLS protocols
 – Industrial injuries
 • Most frequently injured body part
 – Fall from heights
 – Motorcycle injuries
 – Sport Injuries

Pilon Fractures

• Among most difficult fracture to treat
• Axial loading – talus forced into distal tibia (explosive type pattern)
• Soft Tissue injury
 – Swelling, fracture blisters
 – Larger percentage are open fractures
Pilon Fractures

• AO Classification
 • Type A – Extra articular
 • Type B – Partial articular
 • Type C – Complete Articular

Pilon Fractures

• Treatment
 • Non-operative
 — Bedridden patients
 — Parapalegics
 — Significant medical co-morbidities
 • Operative
 — Displaced or unstable fractures
 — Open fractures
 — Inability to maintain alignment
 — Polytrauma
 — Intra-articular displacement

Pilon Fractures

• Surgical Goals
 — Anatomic reduction of articular surface
 — Restoration of length and alignment
 — Rigid fixation
 — Early range of motion
Pilon Fractures (Treatment Evolution)

- Initial good results in Swiss (1970s)
 - Early ORIF
 - Skiing injuries
 - Lower energy
- North American experience
 - Disastrous outcomes
 - High infection rate
 - High wound complication rate
- External fixation
 - Limited incision ORIF with ankle spanning external fixation
 - Ankle stiffness
 - Lower wound complication
- Two-staged protocol
 - Early ORIF of fibula fracture
 - Temporary spanning external fixation
 - Definitive ORIF 7-21 days later
 - Allows soft tissues to recover

Pilon Fractures

- Treatment Algorithm
- Emergent gross realignment (prevent further skin compromise)
- Closed reduction of tibia fracture
- Open reduction of Fibula
- Temporary spanning external fixation
- sd

Pilon Fractures

- Preoperative Planning
- CT scan
Pilon Fractures

• Definitive ORIF
 – Ex-fix removal
 – Application of femoral distractor
 – Reconstruction of articular segment
 – Alignment of metaphysis and diaphysis
 – Rigid internal fixation

Pilon Fractures (Outcomes)

• Pollak et al, JBJS, 2003
 – Outcomes after treatment of high-energy tibial plafond fractures
 – 80 patients evaluated at mean of 3.2 years
 – General health scores lower than age matched controls
 – 35% ankle stiffness
 – 29% persistent swelling
 – 33% significant pain
 – 43% unemployed at F/U

• Predictors of poor outcomes
 – 2 or more medical co-morbidities
 – Being married
 – Treated with definitive external fixation
 – No high school diploma
 – Annual income of < $25,000

Pilon Fractures (Outcomes)

• Marsh et al, JBJS 2003
 • 35 ankles 5-12 post-operative
 • External fixation with limited internal fixation
 • Osteoarthrosis
 – three grade 0
 – six grade 1
 – Twenty grade 2
 – Six grade 3
 • half of patients changed jobs
 • Subjective improvement for 2.4 years
Pilon Fractures (Outcomes)

- Sirkin et al, JOT, 1999
 - A Staged Protocol for Soft Tissue Management in the Treatment of Complex Pilon Fractures
- 34 closed fractures
 - 17% partial thickness skin necrosis
 - 3.4% osteomyelitis
- 22 open fractures
 - 10.5% deep infection

Talus

- 60% of its surface area is covered by cartilage
 - "Universal joint of the foot"
 - Couples dorsiflexion/plantarflexion ankle
 - Inversion/ eversion through subtalar and talonavicular joints
- Limited area for vascular penetration
 - High risk of avascular necrosis after fracture

Talar neck fractures

- Hawkin's Classification (JBJS 1970)
 - Type 1 Nondisplaced
 - AVN risk 14%
 - Type 2 Dislocated Subtalar joint
 - AVN risk 25-50%
 - Type 3 Dislocated subtalar and ankle joint
 - AVN 75-100%
 - Type 4 complete talar dislocation
Talar neck fractures

- Non-operative Management
 - Reserved for true non-displaced fractures
 - Confirm on CT scan
- Short leg cast for 6 weeks
- 2mm of displacement alters contact pressures in subtalar joint (Sangeorzan et al, J Orthop Res, 1992)

Talar neck fractures

- Operative Management
 - All displaced fractures
 - Open fractures
- Surgical Timing
 - Historically a surgical emergency (6-8 hours)
 - Reestablish blood flow
- Vallie et al, JBJS 2004
 - No association with surgical timing and rates of AVN
 - AVN and outcome related to severity of injury (comminution and soft tissue injury) and quality of surgical reduction

Talar neck fractures

- True surgical emergency
 - Irreducible dislocation
 - Skin tension with impending skin breakdown
 - Compartment syndrome
 - Neurovascular injury
 - Open wounds
Talar neck fractures

- Technique
- Dual incision
 - Medial
 - Often medial comminution
 - Lateral
 - Allows subtalar joint access to remove articular debris
 - No comminution, aids in fracture reduction
- Fixation
 - Typically 2 screws
 - Add plates when excessive comminution

Talar Neck Fractures - Outcomes

- Sanders et al, JOT, 2004
- Functional Outcomes Following Displaced Talar Neck Fractures
 - 70 talar neck fractures
 - Mean follow-up 5.2 yrs (2-10)
- 44 patients – no secondary reconstructive procedures
 - 52% pain with VAS score of 4.2/10
 - 70% employed
 - 26% disabled
 - Overall satisfaction 79%
 - Functional level 63% of pre-injury level
- 26 patients required secondary reconstructive surgery (SRS)
- Lifetime table analysis
 - 25% at one year
 - 48% at 10 years
- Comminuted fractures and Hawkins 3 and 4 associated with SRS
 - BKA, subtalar, triple, pantalar arthrodesis

Talar Neck Fractures - Complications

- Arthritis
 - Subtalar ankle
 - Chondral injury, malreduction and malunion
 - 40-75% incidence
- Avascular Necrosis
 - Range 30-35%
 - Associated with comminution, displacement, and open wounds
- Infection
- Nonunion, and malunion
- Arthrofibrosis
 - Goal
 - 75-100% ankle ROM
 - 50%–75% subtalar ROM

Courtesy of Mike Swords, MD
Calcaneus

- Superior Surface:
 - Subtalar (anterior, middle, posterior facets)
 - Spatial relationship
- Plantar surface:
 - Medial and lateral processes
- Tuberosity:
 - Achilles tendon insertion
- Lateral surface:
 - Relatively flat
 - Groove for peroneal tendons
- Medial surface:
 - Sustentaculum tali (FHL)
 - Slopes sharply
 - Neurovascular bundle
- Anterior surface:
 - Calcaneocuboid articulation

Calcaneus

- Principle Function
 - Lever arm for GS complex
 - Foundation for body weight
 - Support/maintain lateral column of the foot
- Thin Cortical Shell
- Neutral Triangle

Injury mechanism

- Axial loading
- Primary fracture line
- anteromedial/ posterolateral fragments
- Secondary fracture lines
 - stellate pattern from sinus tarsi
Fracture Characteristics

- 3 dimensional deformity
 - Intra-articular deformity
 - Loss of height - (ankle impingement)
 - Varus deformity
 - Heel widening (Subfibular impingement)

Classification

- Essex Lopresti, 1952
- Described 2 fracture patterns
 - Tongue type – tuberosity attached to articular fragment
 - Joint-depression – 2 separate fragments

Classification

- Essex Lopresti, 1952
- Described 2 fracture patterns
 - Tongue type – tuberosity attached to articular fragment
 - Joint-depression – 2 separate fragments
Intra-articular Classification

- Crosby et al, JBJS, 1990
 - Associated clinical outcome with fracture type based on CT scan
 - Type I: Nondisplaced
 - Type II: Displaced
 - Type III: Comminuted
- Sanders et al, J. Orthop. Trauma, 1992
 - Coronal CT scans
 - Type I: Nondisplaced
 - Types II-IV: Displaced/posterior facet articular fragments

Treatment – Intra-Articular Fx

- Operative Treatment
 - Indications
 - Displaced intra-articular fractures
 - Heel widening (calcaneofibular impingement)
 - Horizontally oriented talus (talar impingement)
 - Contiguous fractures
 - Open fractures
 - Skin compromise

Operative Treatment

- Initial treatment
 - Respect soft tissues
 - Blistering
 - Swelling
 - Jones dressing
 - Splint

Courtesy of Armen Kelikian, MD
Operative Treatment

- **Goals of ORIF**
 - Restore Articular Integrity
 - Restore Height
 - Restore Width
 - Correct Tuberosity Malalignment
- **Preoperative Planning**
 - Quality Radiographs, CT images
 - Optimal Soft-Tissue Status
 - Hardware On-site

Percutaneous Fixation

- Essex Lopresti Technique
- **Indications** —
 - Tongue type fracture
 - Extra-articular
 - Sanders Type 2C
 - Some Type 2B
- Fixation within 5 days of presentation

Open Technique - Lateral Approach

- L-shaped incision (peroneal artery)
- Subperiosteal flap
- "No touch technique"
- K-wires into talus, fibula, and cuboid
- Sural nerve
- Peroneal tendons
- Calcaneofibular ligament
Fracture Reduction

• Step 1 – anterior calcaneus
 – Reduce anterior and middle facets
 – Reduce calcaneocuboid joint fracture

Fracture Reduction

• Step 2 - Tuberosity
 – Axial traction
 – Correct varus
 – Restore height

Fracture Reduction

• Step 3 - posterior facet
Operative vs. Conservative

- Thorardson et al, FA Intl, 1996
 - 1st prospective, randomized trial
 - 30 patients with Sanders type 2 or 3
 - 17 month follow-up
 - Subtalar ROM 20° vs 17°
 - 25 % vs 100% pain at extremes of motion
 - Operative: 7 excellent, 5 good results
 - Nonoperative: 1 excellent, 3 good
 - Functional score 86.7 vs. 55.0

Operative vs. Conservative

- Buckley et al, JBJS, 2002
 - Randomized controlled trial of 471 fractures
 - 2-8 year follow-up
 - Overall similar results of ORIF vs non-operative care
 - When stratified, superior results with ORIF if:
 - Women
 - Not Worker’s Comp
 - Lighter workload
 - Simple, displaced fractures

Complications

- Harvey et al, FAI, 2001
- Morbidity Associated with ORIF of the Calcaneus using the Lateral Approach
 - 183 patients with 218 displaced calcanei fractures
 - 194 (89%) – uneventful primary wound healing
- One deep infection – BKA in neuropathic patient
- 43.5% patients – subsequent procedures
 - 88 patients (93%) - hardware removal
 - 5 subtalar fusions
 - 7 claw toe corrections
 - 4 calcaneal valgus osteotomies
 - 1 arthrolysis
- Conclusion: ORIF of calcaneal fractures through a lateral approach is a safe and reliable method of treatment
Complications

- Deep Infection rates
 - Closed fractures – 0-20%
 - Open fractures – 19-31%
- Benireschke et al, JOT, 2004
 - Retrospective review
 - 341 closed calcaneal fractures
 - 39 open calcaneal fractures
- Deep infection
 - Closed fracture – 1.8%
 - Open fracture - 7.7%
- Procedures performed
 - I and D - 2
 - IV abx - 6
 - Hardware removal - 4
 - Placement of Abx beads - 1